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Metal ions are essential life elements that reg-
ulate numerous biological and biochemical
functions to every living cell (1,2). However,
overwhelming exposure to heavy metals in a
variety of environmental and occupational
settings is highly toxic to eukaryotic cells
(3,4). Epidemiologic studies have suggested
that some metals and metal-containing com-
pounds are possibly cancer inducers for
human beings (5). These metals include
chromium, arsenic, vanadium, nickel, and
others. Unfortunately, traditional epidemio-
logic approaches have not been able to delin-
eate the molecular mechanisms of human
diseases caused by exposure to toxic metals.

The development of cancer involves mul-
tiple steps that promote the transformation of
normal cells into highly malignant derivatives
(6). In the case of toxic metal–induced car-
cinogenesis, it remains unclear which step or
steps are effectively targeted by metals. For a
given step known to be critically involved in
the process of carcinogenic transformation of
cells, such as nuclear factor kappa B (NF-κB)
or cell growth control, how metals affect the
signal transduction pathways leading to that
step is also poorly understood. Because
NF-κB is a critical transcription factor govern-
ing a number of cellular processes ranging
from anti-apoptotic response to critical onco-
gene expression (7,8), in this brief review we
focus our attention on the mechanisms link-
ing NF-κB activation and possible carcino-
genic transformation of cellular responses to
toxic metals.

Kinase Pathways Leading 
to the Activation of NF-κB
The most classical form of NF-κB is a hetero-
dimer of p50 and p65(RelA), which is
sequestered in the cytoplasm in an inactive

form through its association with one of several
inhibitory molecules, including IκBα, IκBβ,
IκBε, p105, and p100 (8,9). Diverse stimuli,
which typically include cytokines, mitogens,
environmental and occupational particles, toxic
metals, intracellular stresses, viral or bacterial
products, and ultraviolet light, induce the
degradation of IκB or partial degradation of the
C-termini of p105 and p100 precursors, allow-
ing the translocation of NF-κB to the nucleus,
where it induces transcription of a number of
important genes. Many of the NF-κB–target-
ing genes are pivotal in mediating cell-to-cell
interaction, intercellular communication, cell
recruitment or transmigration, amplification or
spreading of primary pathogenic signals, and
initiation or acceleration of carcinogenesis (10).
The consensus binding site of NF-κB on these
target genes is composed of the GGGRN-
NYYCC sequence, where R is purine, Y is
pyrimidine, and N is any base.

The kinases responsible for the signal-
induced phosphorylation of IκB include
IKKα /β and IKKi/ε (9,11,12). Several
upstream kinases have been proposed to be
the physiologically relevant IKK activators by
direct phosphorylation of the IKK subunits.
These kinases include MEKK1 [mitogen-acti-
vated protein (MAP) kinase kinase (MEK)
K1] (13), (protein kinase B) PKB/Akt (14),
NIK (NF-κB–inducing kinase) (15), NAK
(NF-κB–activating kinase) (12), tumor
growth factor β-activating kinase 1 (TAK1)
(16), mixed lineage kinase 3 (MLK3) (17),
and some atypical protein kinase C (PKC) iso-
forms (18). Under certain circumstances,
overexpression of wild-type or a constitutively
active form of these kinases stimulates IKK. In
contrast, overexpression of dominant negative
mutants of these kinases inactivates IKK as
well as the NF-κB–dependent target gene

transcription. In addition to phosphorylating
or activating IKK, all of these kinases can also
relay their upstream signals to several other
non–NF-κB signaling molecules.

The core subunits of IKK complex
include two catalytic subunits, IKKα and
IKKβ, and a structural component named
IKKγ or NEMO/IKKAP (9,11). Sequence
analysis revealed that at the amino acid level,
the IKKα and IKKβ are highly homologous
proteins with 51% sequence identity. Both
IKKα and IKKβ contain a kinase domain at
the NH2-terminus with a leucine zipper
motif and a helix–loop–helix motif in the
COOH-terminal region. In addition, both
subunits contain a canonical MEK activation
loop motif (S-X-X-X-S, where X is any amino
acid) that appears to be essential for the acti-
vation of the kinase activity. It has been sug-
gested that both IKKα and IKKβ are capable
of phosphorylating S32/S36 of IκBα and
S19/S23 of IκBβ (9). However, certain func-
tional differences between IKKα and IKKβ
have been demonstrated by in vitro and ex
vivo experiments. IKKβ seems to be more
responsible in mediating cytokine-, inflam-
mation-, and/or MEKK1-induced NF-κB
activation (9,19). On the other hand, IKKα
is more important in mediating NIK signal-
ing, p100 process, and keratinocyte differen-
tiation (20,21). The IKKγ itself does not
possess any kinase activity, but it is essential
to relay upstream signals to IKK. Point muta-
tions or genomic rearrangement resulting in
partial deletion of IKKγ gene at the X-chro-
mosome has been linked to the autosomal
recessive diseases of hypohidrotic ectodermal
dysplasia and incontinential pigmenti (11). 

IKKι /ε, a newly identified protein with
IKK kinase activity, has been suggested to be
an independent serine/threonine kinase
(22–24). Structurally, this new kinase has an
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overall topologic similarity to IKKα or IKKβ
in the N-terminal kinase domain, C-terminal
leucine zipperlike domain and helix-loop-
helix region. The expression of IKK ι /ε
mRNA is in an inducible fashion, which is
drastically different from that of IKKα or
IKKβ. Using recombinant proteins and a
peptide substrate, a recent study by Kishore et
al. (25) demonstrated that the kinase activity
of IKKι /ε is 50- to 100-fold higher than that
of IKKβ. A yeast-two hybrid screening exper-
iment suggested that the C-terminal portion
of IKKι /ε could specifically associate with the
N-terminal domain of TANK (TRAF-associ-
ated NF-κB activator) (26). The most recent
biochemical evidence provided by Chariot et
al. (27) demonstrated that physical interac-
tion of IKKι /ε with TANK is sufficient to
promote the association of TANK with
IKKγ. Thus, it is possible that IKKι /ε may
associate with a subset of classic IKK complex
and act as an upstream kinase to activate
IKKα or IKKβ. The association of IKKι /e
with IKKα/β complex may serve to relay spe-
cific signals at special sites within cells.

NF-κB Activation Induced 
by Metals
Accumulating evidence suggests that many
metals are able to affect the activation or
activity of NF-κB transcription factor
(28). To date, the results are not straight-
forward. Both activation and inhibition of
NF-κ B by metals  have been reported
(29–31). Several studies from different
groups indicate that, at a noncytotoxic
concentration, arsenic trioxide [As(III)]
(32), chromium(VI) [Cr(VI)] (28), and
vanadium(V) [V(V)] (28) are capable of
activating NF-κB as monitored by either
gel shift assay, reflecting the activation and
nuclear translocation of NF-κB, or NF-
κB–dependent reporter gene assay, an
indicator of NF-κB activity. In contrast, it
has been reported that Cr(VI), As(III), and
other metals inhibit NF-κB activation
through interfer ing with IKK NF-κ B
DNA binding, or the interactions with
nuclear cofactor, cAMP-responsive ele-
ment–binding protein (CREB)–binding
protein (30,31). How can metals mediate
both activation and inhibition of NF-κB?
One possibility is that the final outcome of
metals on NF-κB is either dose dependent
or cell type dependent. Evidence to sup-
port this possibility comes from the studies
by Hamilton et al. (33). Whereas NF-κB is
c lear ly  act ivated by both As(III)  and
Cr(VI) at lower concentrations in MDA
epithelial-type cells, it is not activated by
any of these metals at either lower (1 and 2
µM, respectively) or higher concentrations
(20 and 100 µM, respectively) in H4IIE
rat hepatoma cells.

Arsenic
The first evidence indicating the activating
effect of As(III) on NF-κB is provided by
Barchowsky et al. (32), who demonstrated
that lower concentrations of As(III) activated
NF-κB possibly through oxidative stress in
endothelial cells. Later studies by Hamilton
et al. (33) suggested that activation of NF-κB
by As(III) is dependent on cell types.
Epithelial-like cells appear to be more respon-
sible to As(III) on NF-κB activation. In air-
way epithelial cells, studies by Jaspers et al.
(34) indicated that As(III) activated NF-κB
through an alternative mechanism that did
not require the inducible degradation of
IκBα and the nuclear translocation of NF-κB
proteins. In contrast to these studies, several
reports suggest that As(III) inhibits NF-κB by
either interfering with DNA binding of NF-
κB or directly inactivating IKK (35). In HeLa
cells and HEK293 cells, As(III) has been
shown to be able to bind to cysteine 179 of
IKKβ and inhibit IKK activity induced by
tumor necrosis factor α (TNFα), interleukin
(IL-1), and PMA (35). The controversial
As(III) effects on NF-κB mostly result from
dosages of As(III) used in each experimental
system. It is certain that inhibition of NF-κB
by As(III) will occur at nonphysiologic con-
centrations such as 100–500 µM used in the
DNA binding studies (36). Using wild-type
and sek1 [stress-activated protein kinase
(SAPK)/ERK kinase] gene knockout mouse
embryo stem cells, our recent mechanistic
studies suggest that As(III)-induced NF-κB is
through a signaling pathway that involves
SEK1 (MKK4)-JNK (37). Neither ERK nor
p38 is required for As(III)-induced NF-κB
activation. In the assay of As(III) effects on
IKK activity, the inhibitory effect of As(III)
on IKK was studied in the presence of
TNFα, a cytokine that potentially activates
both the NF-κB signaling pathway and the
cell apoptosis pathway (35). It has been
widely accepted that the simultaneous or
asynchronous stimulatory events in any given

cell type for a particular stimulation, for
example, As(III), will alter the availability of
As(III), intracellular redox status, and the
accessibility of targeting molecules.

In the human bronchial epithelial cell line
BEAS-2B, we observed that the activation of
NF-κB by As(III) occurred in a very narrow
dosage ranges (38). A 5- to 6-fold induction
of NF-κB–dependent reporter gene activity
was observed by As(III) at concentrations of
6–12 µM. In contrast, a substantial inhibition
of NF-κB by As(III) was observed at concen-
trations higher than 25 µM. Obviously, at a
physiologically relevant dose range, As(III) is
not an inhibitor but rather an activator for
NF-κB. To delineate the role of NF-κB in
As(III)-induced cellular responses, we recently
performed cDNA microarray analysis using
mRNAs extracted from both normal and
IKKβ-inhibited cells in response to 10 µM
As(III). As depicted in Figure 1, blockage of
the activation pathway of NF-κB by expres-
sion of dominant negative mutant of IKKβ
potentiated the inducible expression of genes
encoding heme oxygenase, heat shock protein
chaperonin 10, and several proteasome sub-
units. As(III) is a potent inducer for the
expression of several metallothionein pro-
teins. However, the effect of NF-κB on the
induction of these proteins by As(III) appears
to be marginal.

Vanadate
An increasing concern has been raised in
recent years regarding the release of vanadium
into the atmosphere from anthropogenic
sources (39). Vanadium is a major trace metal
in particulate emissions resulting from com-
bustion of fossil fuels and other industrial
activities. The predominant forms of vana-
dium include V(IV) (vanadyl) and V(V) (vana-
date). As an established toxic metal, vanadate
exerts divergent biologic functions, from
insulin-like effects to NF-κB activation, after
entering cells (40–42). V(V) activates NF-κB
in virtually all types of cells (28). The studies
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Figure 1. Scatter plots of gene expression for IKKβ cells and IKKβ-KM cells after 10 µM As(III) treatment
for 12 hr. Gene induction in response to As(III) is visualized as a shift upward from the diagonal, whereas
genes repressed are shifted downward.
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by Schieven et al. (43) indicate that the activa-
tion of NF-κB by V(V) might be tyrosine
kinase dependent. Studies by Imbert et al. (44)
indicate that the activation of NF-κB by V(V)
occurs independently of IκBα degradation.
However, several recent studies suggest that
V(V) does induce degradation of IκBα after
the phosphorylation of serine or tyrosine
(45–47). In RAW264.7 cells, V(V)-induced
IκBα degradation occurred within 10–20 min,
with peak degradation at 40 min (42). In
human myeloid U937 cells or epithelial cells,
V(V)-induced IκBα degradation occurred at
30 min and reached maximum at 240 min
(46). A similar result was achieved in Jurkat
E6.1 cells and the human B-cell lymphoma
line Ramos (34,45,47). In contrast to an ear-
lier report that no resynthesis of IκBα
occurred after V(V) treatment (44), several
studies have indicated that the resynthesis of
IκBα indeed occurs at 80–180 min after V(V)
treatment (42,46).

It is not clear why V(V) is able to induce
degradation of IκBα in some types of cells but
not in others. The explanation for this may be
the use of different forms of V(V). It was noted
that some studies used sodium vanadate
whereas others used peroxovanadate. The latter
form is a reactive product of V(V) in the pres-
ence of H2O2. There is evidence indicating that
sodium vanadate and peroxovanadate exhibit
different effects on the induction of cell apop-
tosis, inactivation of protein phosphatase, and
generation of reactive oxygen species (ROS)
(48). An additional explanation for varying
effects of V(V) on IκBα degradation is the
types of cells used in each experiment. It is well
known that cells originating from different tis-
sues exhibit different capacities for the degrada-
tion of cellular proteins, generation of ROS,
and response to metal or exogenous ROS stim-
ulation. Finally, the dosage of V(V) used in
each experiment may affect the degradation of
IκBα protein. For example, the degradation of
IκBα could be induced by 5–80 µM V(V) but
not by 100–1,000 µM V(V).

Chromium(VI)
It has been well known that the hexavalent
state of chromium [Cr(VI)] is the strongest
oxidizing form and most carcinogenic form of
chromium (49,50). Cr(VI) is able to activate
NF-κB at lower concentrations (<50 µM) in
T cells (51), macrophages (52), bronchial
epithelial cells (53), and human breast cancer
cells (29). The final concentration of Cr(VI) is
critical for this metal to induce or inhibit
NF-κB. The inhibitory effect of Cr(VI) at
higher concentrations (>50 mM) on NF-κB
may be due to the cytotoxic effect on the cells
or interference with the DNA binding activity
of NF-κB (31). We recently demonstrated
that Cr(VI) activated NF-κB at 5–10 µM in
human bronchial epithelial cells cultured at a

relatively higher cell density, possibly through
activating IKK. We further showed that acti-
vation of NF-κB is a protective response for
the cells from Cr(VI)-induced cytotoxicity.
Inhibition of NF-κB by expression of a domi-
nant negative mutant of IKKβ or IKKβ gene
deficiency resulted in a spontaneous cleavage
of Bcl-xl anti-apoptotic protein due to the ele-
vated caspase-3 activity. DNA microarray
assay suggested a decreased expression of genes
encoding the anti-apoptotic proteins cIAP1
and cIAP2, in the cells overexpressing kinase-
mutated IKKβ (IKKβ-KM). Cr(VI) treat-
ment of these NF-κB–inhibited cells induced
necrotic-like cell death. Such Cr(VI)-induced
cell death could be partially inhibited by
expression of exogenous cIAP1, an inhibitor
of caspases, indicating noncaspase cytotoxic
mechanisms may be involved in Cr(VI)-
induced cell death. Indeed, combination of
cIAP1 and the antioxidant N-acetylcysteine
resulted in a significant inhibition of Cr(VI)-
induced cell death of NF-κB–inhibited cells
(53). These results suggest that NF-κB is
essential for inhibiting ROS-dependent cyto-
toxicity. Such inhibition may involve up-regu-
lation of anti-death proteins, including cIAP1,
which prevents spontaneous caspase activation
and subsequent cleavage of Bcl-xl protein.

Questions of ROS Effects
on Metal-Induced NF-κB
A number of reports suggest that NF-κB can
be activated by a variety of ROS that cause
oxidative stress (54,55). It has been realized
for decades that oxidative stress is the major
effect of toxic metals on cellular events (56).
It appears logical, therefore, to assume that
the activation of NF-κB by toxic metals is
through the induction of ROS. Nevertheless,
several obstacles are still unsolved (57–60). If
oxidative stress is a common mechanism for
toxic metal-induced cellular response, one
will speculate that all of the metals should
have the same or similar effects on NF-κB.
However, it is not true in reality. One exam-
ple is the activation of NF-kB induced by
As(III) and Cr(VI). Whereas Cr(VI) is
stronger than As(III) in the induction of ROS
generation, Cr(VI) is much weaker than
As(III) in the induction of the NF-κB
reporter gene activity (28). Even if oxidative
stress is the true reason for the metal-induced

activation of NF-κB, several questions remain
to be answer. Are these ROS essential media-
tors for the activation of NF-κB or bystanders
during the activation of NF-κB? When
antioxidants were used in experimental sys-
tem to support the claims of ROS-dependent
activation of NF-κB by metals, did these
antioxidants solely attenuate the oxidative
stress without other cellular effects (61,62)?
How do we reconcile the activation of NF-
κB by ROS with the fact that oxidation of
NF-κB proteins decreases the DNA-binding
activity of this transcription factor (63–67)?
Does direct interaction occur between metal
ions and signaling proteins for the activation
of NF-κB? If this is the case, the binding of
metals with signaling proteins will certainly
alter the functions of these proteins without
the ROS effect. 

The NF-κB activation pathways by TNF,
IL-1, Toll, LPS, and CD28 have been clearly
identified. However, no direct evidence is
available to suggest the responsiveness of sig-
naling molecules in these pathways to ROS
(68–71). The evidence to implicate ROS as
stimulators of IKK is based on the elevated
IKK activity in human epithelial cells or mouse
fibroblast cells caused by the H2O2 treatment
(72,73). In our own studies, we found a mod-
est induction of IKK activity in cellular
response to Cr(VI), a potent intracellular
H2O2 inducer (53). However, H2O2 itself nei-
ther stimulates IKK activity nor induces NF-
κB reporter gene activity at a wide dose range,
suggesting that other mechanisms, rather than
oxidative stress, may be responsible for the
Cr(VI)-induced NF-κB activation. Similarly,
Korn et al. (71) found that H2O2 itself failed
to stimulate IKK but rather inhibited TNFα-
induced IKK activity. It is likely that H2O2
inactivates IKK through direct oxidation of a
conserved cysteine 179 in the kinase domain of
IKKβ, a mechanism similar to the inactivation
of IKKβ by 15d-prostoglandin J2 and a high
concentration of arsenic (Figure 2) (35,74). In
comparison with several other kinases, includ-
ing JNK, p38, PDK1, CKII, and MEKK1,
only IKKβ and IKKα contain a cysteine
residue in its kinase activation domain (Figure
2). This structural characteristic indicates that
IKK but not kinases for the MAP kinase sig-
naling is susceptible to oxidative inactivation.
Thus, if ROS are truly capable of inducing
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Figure 2. Alignment of the activation domain of IKKβ with the corresponding domains of other kinases.
Conserved residues are boxed. Kinase domains VII and VIII are underlined. The unique cysteine 179
residue in IKKβ is marked with an asterisk. 



NF-κB, they are most likely to do so
through the regulations of other kinases or
protein phosphatases. 

Summary

Human beings are continuously exposed to
diverse environmental stimuli. It is of great
importance that these stimuli are correctly
interpreted by the cell, a basic unit of our
body, to avoid deteriorating cellular responses
such as carcinogenic transformation. A num-
ber of cellular proteins play pivotal roles in
this process. By associating with specific part-
ners, these proteins are able to integrate these
external stimuli with internal signal transduc-
tion pathways, contributing to the ability of
the cell to respond correctly to its environ-
ment. However, a sustained exposure to these
stimuli will result in the disturbance of normal
cellular functions and consequently malignant
transformation during tumor development.

What is so important about the NF-κB
signaling pathway in metal-induced cellular
responses? First, NF-κB is a transcription fac-
tor highly conserved in virtually all types of
cells, from macrophage cells to epithelial cells,
a sign of its importance. Second, the involve-
ment of NF-κB in cellular response to metals
provides insights into the regulatory circuitry
that controls the biochemical responses of the
cells, an essential process that, if overreacted,
is harmful to the cell. The dramatic cell death
observed when NF-κB is inhibited in epithe-
lial cells further emphasizes the need to keep a
precise balance of pro- and anti-apoptosis
molecules throughout the cell growth cycle.
The next challenge is to understand where
the metals or their ROS derivatives interact
with cellular signaling molecules. This issue is
puzzling because metals and their ROS deriv-
atives appear to have numerous targets intra-
cellularly. Pinpointing the exact mechanisms
of metal-induced activation of NF-κB will be
crucial for the development of novel preven-
tive measures and therapeutic strategies for
diseases related to toxic metal exposure.
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